If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x+11=0
a = 2; b = -16; c = +11;
Δ = b2-4ac
Δ = -162-4·2·11
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{42}}{2*2}=\frac{16-2\sqrt{42}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{42}}{2*2}=\frac{16+2\sqrt{42}}{4} $
| 201=-3x-4(5x+13) | | 8x+4=3x+4+140 | | 11-m=51-6 | | -84=6x-5(2x+12) | | -b/3=3 | | x/5+3=11 | | 9÷3a+1= | | -16(t^2-5t+6)=0 | | x/2-6=x/9 | | 32(x4)=x | | H=-49t^2+49t+1.5=124 | | 3(y+5)=13 | | x/11+14=20 | | 3-6x-2.5=18 | | 2(3x+1)=-5(5x-4) | | 2/7r=56 | | (2x+1)=43 | | X=6y=3 | | -32-15x=-20x+3 | | 5(7–3x)=20x | | 40y=500 | | H=60t-16(60)^2 | | X=2y=2 | | 5x+1+3x+44=180 | | x/8+18=27 | | 4x+6=6+3 | | X=1y=7 | | w/2+3=-12 | | 4x+6=6+52 | | |5-2x|=9 | | m/2+8≥=12 | | 5(10+x)=45 |